Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Geroscience ; 2022 Sep 16.
Article in English | MEDLINE | ID: covidwho-2314402

ABSTRACT

Severe cases of COVID-19 are characterized by an inflammatory burst, which is accompanied by multiorgan failure. The elderly population has higher risk for severe or fatal outcome for COVID-19. Inflammatory mediators facilitate the immune system to combat viral infection by producing antibodies against viral antigens. Several studies reported that the pro-inflammatory state and tissue damage in COVID-19 also promotes autoimmunity by autoantibody generation. We hypothesized that a subset of these autoantibodies targets cardiac antigens. Here we aimed to detect anti-cardiac autoantibodies in severe COVID-19 patients during hospitalization. For this purpose, 104 COVID-19 patients were recruited, while 40 heart failure patients with dilated cardiomyopathy and 20 patients with severe aortic stenosis served as controls. Patients were tested for anti-cardiac autoantibodies, using human heart homogenate as a bait. Follow-up samples were available in 29 COVID-19 patients. Anti-cardiac autoantibodies were detected in 68% (71 out of 104) of severe COVID-19 patients. Overall, 39% of COVID-19 patients had anti-cardiac IgG autoantibodies, while 51% had anti-cardiac autoantibodies of IgM isotype. Both IgG and IgM anti-cardiac autoantibodies were observed in 22% of cases, and multiple cardiac antigens were targeted in 38% of COVID-19 patients. These anti-cardiac autoantibodies targeted a diverse set of myocardial proteins, without apparent selectivity. As controls, heart failure patients (with dilated cardiomyopathy) had similar occurrence of IgG (45%, p = 0.57) autoantibodies, while significantly lower occurrence of IgM autoantibodies (30%, p = 0.03). Patients with advanced aortic stenosis had significantly lower number of both IgG (11%, p = 0.03) and IgM (10%, p < 0.01) type anti-cardiac autoantibodies than that in COVID-19 patients. Furthermore, we detected changes in the anti-cardiac autoantibody profile in 7 COVID-19 patients during hospital treatment. Surprisingly, the presence of these anti-cardiac autoantibodies did not affect the clinical outcome and the prevalence of the autoantibodies did not differ between the elderly (over 65 years) and the patients younger than 65 years of age. Our results demonstrate that the majority of hospitalized COVID-19 patients produce novel anti-cardiac IgM autoantibodies. COVID-19 also reactivates resident IgG autoantibodies. These autoantibodies may promote autoimmune reactions, which can complicate post-COVID recuperation, contributing to post-acute sequelae of COVID-19 (long COVID).

2.
Frontiers in cardiovascular medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-2046924

ABSTRACT

Introduction Although myocarditis after anti-SARS-CoV-2 vaccination is increasingly recognized, we have little data regarding the course of the disease and, consequently, the imaging findings, including the tissue-specific features. The purpose of this study is to describe the clinical, immunological, and cardiac magnetic resonance (CMR) features of myocarditis after COVID-19 immunization in the acute phase and during follow-up. We aimed to compare the trajectory of the disease to myocarditis cases unrelated to COVID-19. Methods We assembled a CMR-based registry of potentially COVID-19 vaccination-related myocarditis cases. All patients who experienced new-onset chest pain and troponin elevation after COVID-19 vaccination and imaging confirming the clinical suspicion of acute myocarditis were enrolled in our study. Participants underwent routine laboratory testing and testing of their humoral and cellular immune response to COVID-19 vaccination. Clinical and CMR follow-up was performed after 3–6 months. We included two separate, sex- and age-matched control groups: (1) individuals with myocarditis unrelated to COVID-19 infection or vaccination confirmed by CMR and (2) volunteers with similar immunological exposure to SARS-CoV-2 compared to our group of interest (no difference in the number of doses, types and the time since anti-SARS-CoV-2 vaccination and no difference in anti-nucleocapsid levels). Results We report 16 CMR-confirmed cases of myocarditis presenting (mean ± SD) 4 ± 2 days after administration of the anti-SARS-CoV-2 vaccine (male patients, 22 ± 7 years), frequently with predisposing factors such as immune-mediated disease and previous myocarditis. We found that 75% received mRNA vaccines, and 25% received vector vaccines. During follow-up, CMR metrics depicting myocardial injury, including oedema and necrosis, decreased or completely disappeared. There was no difference regarding the CMR metrics between myocarditis after immunization and myocarditis unrelated to COVID-19. We found an increased T-cell response among myocarditis patients compared to matched controls (p < 0.01), while there was no difference in the humoral immune response. Conclusion In our cohort, myocarditis occurred after both mRNA and vector anti-SARS-CoV-2 vaccination, frequently in individuals with predisposing factors. Upon follow-up, the myocardial injury had healed. Notably, an amplified cellular immune response was found in acute myocarditis cases occurring 4 days after COVID-19 vaccination.

3.
Int J Cardiol ; 362: 196-205, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-1889456

ABSTRACT

INTRODUCTION: The respiratory illness triggered by severe acute respiratory syndrome virus-2 (SARS-CoV-2) is often particularly serious or fatal amongst patients with pre-existing heart conditions. Although the mechanisms underlying SARS-CoV-2-related cardiac damage remain elusive, inflammation (i.e. 'cytokine storm') and oxidative stress are likely involved. METHODS AND RESULTS: Here we sought to determine: 1) if cardiomyocytes are targeted by SARS-CoV-2 and 2) how inflammation and oxidative stress promote the viral entry into cardiac cells. We analysed pro-inflammatory and oxidative stress and its impact on virus entry and virus-associated cardiac damage from SARS-CoV-2 infected patients and compared it to left ventricular myocardial tissues obtained from non-infected transplanted hearts either from end stage heart failure or non-failing hearts (donor group). We found that neuropilin-1 potentiates SARS-CoV-2 entry into human cardiomyocytes, a phenomenon driven by inflammatory and oxidant signals. These changes accounted for increased proteases activity and apoptotic markers thus leading to cell damage and apoptosis. CONCLUSION: This study provides new insights into the mechanisms of SARS-CoV-2 entry into the heart and defines promising targets for antiviral interventions for COVID-19 patients with pre-existing heart conditions or patients with co-morbidities.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Inflammation , Myocytes, Cardiac , Oxidative Stress
4.
Orv Hetil ; 163(11): 414-423, 2022 03 13.
Article in Hungarian | MEDLINE | ID: covidwho-1742064

ABSTRACT

Összefoglaló. A krónikus autoimmun betegségben szenvedokben a súlyos COVID-19 kialakulásának kockázata magasabb, a SARS-CoV-2-fertozés pedig a krónikus alapbetegség progressziójához, fellángolásához vezethet. A COVID-19 elkerülésének legbiztonságosabb, legköltséghatékonyabb módszere a vakcináció, illetve az emellett alkalmazott higiénés szabályok betartása, a megfelelo maszk viselése. A hiedelemmel ellentétben önmagában az autoimmun megbetegedés nem jelent oltási ellenjavallatot, sot a rizikóállapot miatt ezek a betegek az elsok között oltandók. A COVID-19 elleni vakcina alkalmazásának egyetlen egyértelmu kontraindikációja az anamnézisben szereplo súlyos allergiás reakció (anafilaxia) a vakcina valamelyik alkotórészével szemben. A betegek olthatóságát többek között befolyásolja az aktuális betegségaktivitás és az alkalmazott kezelés. Az immunizáció idejét a legbiztonságosabban a gondozó orvos tervezheti meg. Az autoimmun betegek immunizációja során észlelheto oltási reakciók és szövodmények incidenciája megegyezik az egészséges populációban is tapasztalt elofordulási gyakorisággal. Orv Hetil. 2022; 163(11): 414-423. Summary. The risk of developing severe COVID-19 is higher in patients with autoimmune diseases, and SARS-CoV-2 infection can lead to progression and exacerbation of the underlying chronic disease. The safest and most cost-effective way to avoid COVID-19 is to be vaccinated, to follow the hygiene rules and to wear an appropriate mask. Contrary to belief, autoimmune disease alone is not a contraindication to vaccination and, in fact, patients should be among the first to be vaccinated because of the risk. The only clear contraindication to the use of COVID-19 vaccine is a history of severe allergic reaction (anaphylaxis) to any of the components of the vaccine. Indication of vaccination migh be influenced by, among other things, the current disease activity and the treatment applied. The timing of immunization can be the most safely planned by the attending physician. The incidence of vaccination reactions and complications during immunization in autoimmune patients is similar to that seen in the healthy population. Orv Hetil. 2022; 163(11): 414-423.


Subject(s)
Autoimmune Diseases , COVID-19 , Viral Vaccines , Autoimmune Diseases/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Child , Humans , SARS-CoV-2
5.
Int J Infect Dis ; 115: 8-16, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1536601

ABSTRACT

OBJECTIVES: Angiotensin-converting enzyme 2 (ACE2) represents the primary receptor for SARS-CoV-2 to enter endothelial cells. Here we investigated circulating ACE2 activity to predict the severity and mortality of COVID-19. METHODS: Serum ACE2 activity was measured in COVID-19 (110 critically ill and 66 severely ill subjects at hospital admission and 106 follow-up samples) and in 32 non-COVID-19 severe sepsis patients. Associations between ACE2, inflammation-dependent biomarkers, pre-existing comorbidities, and clinical outcomes were studied. RESULTS: Initial ACE2 activity was significantly higher in critically ill COVID-19 patients (54.4 [36.7-90.8] mU/L) than in severe COVID-19 (34.5 [25.2-48.7] mU/L; P<0.0001) and non-COVID-19 sepsis patients (40.9 [21.4-65.7] mU/L; P=0.0260) regardless of comorbidities. Circulating ACE2 activity correlated with inflammatory biomarkers and was further elevated during the hospital stay in critically ill patients. Based on ROC-curve analysis and logistic regression test, baseline ACE2 independently indicated the severity of COVID-19 with an AUC value of 0.701 (95% CI [0.621-0.781], P<0.0001). Furthermore, non-survivors showed higher serum ACE2 activity vs. survivors at hospital admission (P<0.0001). Finally, high ACE2 activity (≥45.4 mU/L) predicted a higher risk (65 vs. 37%) for 30-day mortality (Log-Rank P<0.0001). CONCLUSIONS: Serum ACE2 activity correlates with COVID-19 severity and predicts mortality.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/blood , COVID-19/diagnosis , COVID-19/mortality , Endothelial Cells , Humans , Severity of Illness Index
6.
Geroscience ; 43(5): 2289-2304, 2021 10.
Article in English | MEDLINE | ID: covidwho-1482277

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is essential for SARS-CoV-2 cellular entry. Here we studied the effects of common comorbidities in severe COVID-19 on ACE2 expression. ACE2 levels (by enzyme activity and ELISA measurements) were determined in human serum, heart and lung samples from patients with hypertension (n = 540), heart transplantation (289) and thoracic surgery (n = 49). Healthy individuals (n = 46) represented the controls. Serum ACE2 activity was increased in hypertensive subjects (132%) and substantially elevated in end-stage heart failure patients (689%) and showed a strong negative correlation with the left ventricular ejection fraction. Serum ACE2 activity was higher in male (147%), overweight (122%), obese (126%) and elderly (115%) hypertensive patients. Primary lung cancer resulted in higher circulating ACE2 activity, without affecting ACE2 levels in the surrounding lung tissue. Male sex resulted in elevated serum ACE2 activities in patients with heart transplantation or thoracic surgery (146% and 150%, respectively). Left ventricular (tissular) ACE2 activity was unaffected by sex and was lower in overweight (67%), obese (62%) and older (73%) patients with end-stage heart failure. There was no correlation between serum and tissular (left ventricular or lung) ACE2 activities. Neither serum nor tissue (left ventricle or lung) ACE2 levels were affected by RAS inhibitory medications. Abandoning of ACEi treatment (non-compliance) resulted in elevated blood pressure without effects on circulating ACE2 activities. ACE2 levels associate with the severity of cardiovascular diseases, suggestive for a role of ACE2 in the pathomechanisms of cardiovascular diseases and providing a potential explanation for the higher mortality of COVID-19 among cardiovascular patients. Abandoning RAS inhibitory medication worsens the cardiovascular status without affecting circulating or tissue ACE2 levels.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Angiotensin-Converting Enzyme 2 , Biomarkers , Female , Humans , Male , Renin-Angiotensin System , Stroke Volume , Ventricular Function, Left
7.
Cells ; 10(7)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1302160

ABSTRACT

Objective: Inhibitors of the angiotensin converting enzyme (ACE) are the primarily chosen drugs to treat heart failure and hypertension. Moreover, an imbalance in tissue ACE/ACE2 activity is implicated in COVID-19. In the present study, we tested the relationships between circulating and tissue (lung and heart) ACE levels in men. Methods: Serum, lung (n = 91) and heart (n = 72) tissue samples were collected from Caucasian patients undergoing lung surgery or heart transplantation. ACE I/D genotype, ACE concentration and ACE activity were determined from serum and tissue samples. Clinical parameters were also recorded. Results: A protocol for ACE extraction was developed for tissue ACE measurements. Extraction of tissue-localized ACE was optimal in a 0.3% Triton-X-100 containing buffer, resulting in 260 ± 12% higher ACE activity over detergent-free conditions. SDS or higher Triton-X-100 concentrations inhibited the ACE activity. Serum ACE concentration correlated with ACE I/D genotype (II: 166 ± 143 ng/mL, n = 19, ID: 198 ± 113 ng/mL, n = 44 and DD: 258 ± 109 ng/mL, n = 28, p < 0.05) as expected. In contrast, ACE expression levels in the lung tissue were approximately the same irrespective of the ACE I/D genotype (II: 1423 ± 1276 ng/mg, ID: 1040 ± 712 ng/mg and DD: 930 ± 1273 ng/mg, p > 0.05) in the same patients (values are in median ± IQR). Moreover, no correlations were found between circulating and lung tissue ACE concentrations and activities (Spearman's p > 0.05). In contrast, a significant correlation was identified between ACE activities in serum and heart tissues (Spearman's Rho = 0.32, p < 0.01). Finally, ACE activities in lung and the serum were endogenously inhibited to similar degrees (i.e., to 69 ± 1% and 53 ± 2%, respectively). Conclusion: Our data suggest that circulating ACE activity correlates with left ventricular ACE, but not with lung ACE in human. More specifically, ACE activity is tightly coordinated by genotype-dependent expression, endogenous inhibition and secretion mechanisms.


Subject(s)
Peptidyl-Dipeptidase A/metabolism , Aged , Female , Humans , Lung/metabolism , Male , Middle Aged , Myocardium/metabolism , Peptidyl-Dipeptidase A/analysis , Peptidyl-Dipeptidase A/blood , Peptidyl-Dipeptidase A/genetics , Polymorphism, Genetic , Protein Processing, Post-Translational
8.
Geroscience ; 43(1): 19-29, 2021 02.
Article in English | MEDLINE | ID: covidwho-1290415

ABSTRACT

Coronavirus disease 2019 (COVID-19) has a high mortality in elderly patients with pre-existing cardiovascular diseases. The cellular receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the angiotensin-converting enzyme 2 (ACE2), thereby implicating a link between cardiovascular diseases and SARS-CoV-2 susceptibility. Aortic stenosis (AS) represents a chronic inflammatory state with severe cardiovascular complications in the elderly, a prime condition for COVID-19 mortality. The circulating ACE2 levels were measured in 111 patients with severe AS and compared to patients with hypertension and healthy individuals. About 4 times higher circulating ACE2 activity was found in patients with severe AS than in hypertensives or healthy individuals (88.3 ± 61.6., n = 111, 20.6 ± 13.4, n = 540, and 16.1 ± 7.4 mU/L, n = 46, respectively). Patients with severe AS were older than patients with hypertension (80 ± 6 years vs. 60 ± 15 years, P < 0.05). Serum ACE2 activity correlated negatively with the left ventricular ejection fraction, aortic root area, TAPSE, and positively with the right ventricular systolic pressure, cardiac diameters in patients with AS. In contrast, circulating ACE2 activity was independent of the blood pressure, peak flow velocity at the aortic root, kidney function (GFR), and inflammatory state (CRP). We found no effect of RAAS inhibitory drugs on the serum ACE2 activity in this group of patients. Our results illustrate circulating ACE2 as a potential interface between chronic inflammation, cardiovascular disease, and COVID-19 susceptibility. Elderly patients with AS have markedly elevated ACE2 levels together with altered left and right ventricular functions, which may pose higher risks during COVID-19. Our clinical data do not support a role for RAAS inhibitors in regulating circulating ACE2 levels.


Subject(s)
Aortic Valve Stenosis , COVID-19 , Aged , Angiotensin-Converting Enzyme 2 , Biomarkers , Humans , Middle Aged , Peptidyl-Dipeptidase A , Renin-Angiotensin System , SARS-CoV-2 , Stroke Volume , Ventricular Function, Left
9.
Orv Hetil ; 162(17): 652-667, 2021 04 10.
Article in Hungarian | MEDLINE | ID: covidwho-1175460

ABSTRACT

Összefoglaló. A SARS-CoV-2-fertozés ritka gyermekkori szövodménye a sokszervi gyulladás, angol terminológiával paediatric inflammatory multisystem syndrome (PIMS). Két vagy több szerv érintettségével járó, súlyos tünetekkel induló betegségrol van szó, amelynek tünetei átfedést mutatnak a Kawasaki-betegséggel, a toxikus sokk szindrómával és a makrofágaktivációs szindrómával. A PIMS-betegek intenzív terápiás osztályon vagy intenzív terápiás háttérrel rendelkezo intézményben kezelendok, ahol biztosítottak a kardiológiai ellátás feltételei is. A szükséges immunterápia a klinikai prezentációtól függ. A jelen közleményben a szerzok a releváns nemzetközi irodalom áttekintését követoen ajánlást tesznek a PIMS diagnosztikai és terápiás algoritmusára. Orv Hetil. 2021; 162(17): 652-667. Summary. Pediatric inflammatory multisystem syndrome (PIMS) is a rare complication of SARS-CoV-2 infection in children. PIMS is a severe condition, involving two or more organ systems. The symptoms overlap with Kawasaki disease, toxic shock syndrome and macrophage activation syndrome. PIMS patients should be treated in an intensive care unit or in an institution with an intensive care background, where cardiological care is also provided. The required specific immunotherapy depends on the clinical presentation. In this paper, after reviewing the relevant international literature, the authors make a recommendation for the diagnostic and therapeutic algorithm for PIMS. Orv Hetil. 2021; 162(17): 652-667.


Subject(s)
COVID-19 , Systemic Inflammatory Response Syndrome , Algorithms , COVID-19/complications , COVID-19/diagnosis , COVID-19/therapy , COVID-19/virology , Child , Critical Care , Humans , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/therapy , Systemic Inflammatory Response Syndrome/virology
10.
Orv Hetil ; 161(50): 2099-2103, 2020 12 13.
Article in Hungarian | MEDLINE | ID: covidwho-992775

ABSTRACT

Összefoglaló. Bevezetés: Egy új, számítógép által segített betegminta-asszociációs analízis eredménye szerint a COVID-19 tüneteinek kialakításában kiemelt tényezoként jelenik meg a bradikinin. Eszerint a bradikinin lebontása lelassul az angiotenzinkonvertáló enzim aktivitásának csökkenése miatt, ami jelentosen megemelkedo bradikininszinthez vezet a tüdoben. Nem merült fel azonban a véralvadási faktorok lehetséges szerepe a "bradikininviharban", annak ellenére, hogy az idosebb cardiovascularis betegekben aktiválódó XII-es faktor és a C1-észteráz-inhibitor (C1INH) alacsony szintje nagy mennyiségu bradikinin képzodéséhez vezethet. Módszer: Átfogó irodalmi áttekintés. Eredmények: 1) A vírus által fertozött, sérült endotheliumsejtek felülete az a hely, amellyel érintkezve elindulhat a XII-es véralvadási faktor aktivációja - ez serkenti a prekallikrein/kallikrein/kinin rendszert, és bradikininképzodést okoz. Ez a folyamat megtörténik a súlyos vese- és tüdokárosodást okozó hantavírus-fertozésekben. 2) Idos betegekben az atherosclerosis miatt többszörösen sérült, merev, "stiff" erek endotheliumfelszínein jóval magasabb lehet a XII-es faktor kontakt úton történo aktivációja, mint a fiatal egyének ereiben. Ez a tény egyik oka lehet az idos, cardiovascularis betegek körében tapasztalt magasabb halálozásnak. Következtetés: Az aktivált XII-es véralvadási faktor célzott gátlása újabb gyógyítási lehetoség lehet a SARS-CoV-2-fertozött idos betegekben. Jelenleg már hatásosnak bizonyult a bradikininképzést gátló C1INH-nak, továbbá a bradikininreceptor-gátlóknak az adása is. Orv Hetil. 2020; 161(50): 2099-2103. INTRODUCTION: Bradykinin was implicated in a new complex model of pathomechanism leading to the symptoms of COVID-19 created by a computer-assisted association analysis. According to this model, the decrease in angiotensin-converting enzyme expression leads to impaired bradykinin elimination and subsequent enrichment in the lungs. However, there is no mentioning of the importance of blood coagulation factor XII in increased bradykinin production, in spite of its age-dependent activation and the lower level of C1-esterase inhibitor (C1INH). Activated factor XII may be an important contributor to the "bradykinin storm" in elder cardiovascular patients. METHOD: Literature review. RESULTS: 1) Activation of the coagulation factor XII on the surface of SARS-CoV-2 infected endothelial cells may trigger the prekallikrein/kallikrein/kinin system producing bradykinin. Such process is taking place in hantavirus infections causing severe lung and kidney damages. 2) The endothelial system is dysregulated in elderly patients, resulting in potentially higher factor XII activities on the surface of damaged endothelial cells in the stiffened arteries. This can contribute to the higher mortality rates in the elderly. CONCLUSION: The targeted inhibition of activated blood coagulation factor XII may represent a new therapeutic target for COVID-19, especially for elder patients. Recently, beneficial results have already been observed by the clinical applications of recombinant C1INH and bradykinin receptor antagonists. Orv Hetil. 2020; 161(50): 2099-2103.


Subject(s)
Betacoronavirus , Bradykinin , Factor XIIa , Age Factors , Aged , Angiotensin-Converting Enzyme Inhibitors , COVID-19 , Complement C1 Inhibitor Protein , Endothelial Cells , Humans , SARS-CoV-2
11.
Int J Infect Dis ; 103: 412-414, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-943191

ABSTRACT

Endothelial cells express surface angiotensin-converting enzyme 2 (ACE2), the main receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that promotes the infection of endothelial cells showing activation and damage. Bronchoalveolar lavage fluid from coronavirus disease-2019 (COVID-19) subjects showed a critical imbalance in the renin-angiotensin-aldosterone system with the upregulated expression of ACE2. Recently, intravenous recombinant ACE2 was reported as an effective therapy in severe COVID-19 by blocking the viral entry to target cells. Here, we present a case of a critically ill COVID-19 patient with acute respiratory distress syndrome where circulating ACE2 was first measured to monitor disease prognosis. ACE2 activity increased about 40-fold over the normal range and showed a distinct time course as compared to 2-3-fold higher levels of endothelium biomarkers. Although the level of soluble E-selectin followed the clinical status of our patient similar to ferritin and IL-6 levels, the dramatic rise in serum ACE2 activity may act as an endogenous nonspecific protective mechanism against SARS-CoV-2 infection that preceded the recovery of our patient.


Subject(s)
Angiotensin-Converting Enzyme 2/blood , COVID-19/enzymology , Aged , COVID-19/blood , COVID-19/physiopathology , Critical Illness , Endothelial Cells/metabolism , Humans , Male , Renin-Angiotensin System/physiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL